# Download A brief introduction to Finsler geometry by Dahl M. PDF

By Dahl M.

Read or Download A brief introduction to Finsler geometry PDF

Best geometry and topology books

Low Dimensional Topology

During this quantity, that is devoted to H. Seifert, are papers according to talks given on the Isle of Thorns convention on low dimensional topology held in 1982.

Additional resources for A brief introduction to Finsler geometry

Sample text

A stationary curve of E is a geodesic. Proof. Suppose E is stationary for a curve c. 6 implies that cˆ is a integral curve of G. 4. 8. 17. If γ : I → T M \ {0} is an integral curve of G/F , then π ◦ γ is a stationary curve for E. Conversely, if c is a stationary curve for E, then λ = F ◦ cˆ is constant and c ◦ M1/λ (see below) is an integral curve of G/F . If s > 0, we denote by Ms the mapping Ms : t → st, t ∈ R. 35 Proof. Let c : I → T M \ {0} be an integral curve of G/F . If c = (x, y), then dxi dt dy i dt = yi , λ = −2 Gi ◦ c , λ where λ = F ◦γ > 0 is constant.

10. The cotangent bundle T ∗ M \ {0} of manifold M is a symplectic manifold with a symplectic form ω given by ω = dθ = dxi ∧ dξi , where θ is the Poincar´e 1-form θ ∈ Ω1 T ∗ M \ {0} . ∂ i ∂ i ∂ Proof. It is clear that ω is closed. If X = a i ∂x i + b ∂ξ , and Y = v ∂xi + i wi ∂ξ∂ i , then ω(X, Y ) = a · w − b · v. By setting v = w we obtain a = b, and by setting w = 0 we obtain a = b = 0. The next example shows that we can always formulate Hamilton’s equations on the cotangent bundle. This motivates the name for X H .

The other proof is similar. 37 38 References [AIM94] P. L. Antonelli, R. S. Ingarden, and M. Matsumoto, The theory of sprays and finsler spaces with applications in physics and biology, Fundamental Theories of Physics, Kluwer Academic Publishers, 1994. [Ana96] M. Anastasiei, Finsler Connections in Generalized Lagrange Spaces, Balkan Journal of Geometry and Its Applications 1 (1996), no. 1, 1–10. [Con93] L. Conlon, Differentiable manifolds: A first course, Birkh¨auser, 1993. N. Dzhafarov and H. Colonius, Multidimensional fechnerian scaling: Basics, Journal of Mathematical Psychology 45 (2001), no.