
By J.C.Becker, D.H.Gottlieb
Read Online or Download A History of Duality in Algebraic Topology PDF
Best geometry and topology books
During this quantity, that's devoted to H. Seifert, are papers in accordance with talks given on the Isle of Thorns convention on low dimensional topology held in 1982.
- Investigations in geometry
- Geometry 2
- First Notions Of Logic: Preparatory To The Study Of Geometry
- The homotopy invariance of the string topology loop product and string bracket
- Noncommutative Algebra and Geometry
- Surveys in noncommutative geometry: proceedings from the Clay Mathematics Institute Instructional Symposium, held in conjuction with the AMS-IMS-SIAM Joint Summer Research Conference on Noncommutative Geometry, June 18-29, 2000, Mount Holyoke College, Sou
Extra resources for A History of Duality in Algebraic Topology
Example text
1937), On products in a complex, Proc. Nat. Acad. Sci. USA 23, 285–291. Whitney, H. (1938), On products in a complex, Ann. of Math. 39, 397–432. Wirthm¨ uller, K. (1975), Equivariant S-duality, Arch. Math. (Basel) 26, 427–431.
Math. Soc. 87, 294–329. S. B. (1972), Applications to stable homotopy theory, Bull. Amer. Math. Soc. 78, 981–987. Knill, R. (1971), On the homology of a fixed point set, Bull. Amer. Math. Soc. 77, 184–190. Lefschetz, S. (1926), Intersections and transformations of complexes and manifolds, Trans. Amer. Math. Soc. 28, 1–49; (also in selected papers, Chelsea, New York, 1971, pp. 199–247). Lefschetz, S. (1928), Closed point sets on a manifold, Ann. of Math. 29, 232–254; (also in selected papers, Chelsea, New York, 1971, pp.
Math. 10, 585–590. Moore, J. C. (1956), On a theorem of Borsuk, Fund. Math. 43, 195–201. Nomura, Y. (1960), On mapping sequences, Nagoya Math. J. 17, 111–145. 32 Poincar´ e, H. R. Acad. Sci. Paris 115; (also in Oeuvres, vol. VI, pp. 186– 192). Poincar´ e, H. R. Acad. Sci. Paris 117, 144–145; (also in Oeuvres, vol. XI, pp. 6–7). Poincar´ e, H. (1895), Oeuvres, vol. VI, Gauthier–Villars, Paris 1953. Pontrjagin, L. (1934), The general topological theorem of duality for closed sets, Ann. of Math. 35, 904–914.